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Abstract— We present a method to analyse the be-
haviour of wireless sensor networks (WSN) with a mul-
tihop architecture, where the sensor nodes are conveying
gathered information into a sink node. In particular, we
are interested in analysing the impact of data aggregation
in intermediate nodes, comparing the increase of the
time of arrival of messages to the sink node with the
decrease of total messages sent by the whole network.
One can use this approach to perform a pre-deployment
optimization of the network parameters, so that its
lifetime is increased while keeping the messages delay
within a certain threshold.

I. INTRODUCTION

Wireless sensor networks (WSN) are networks con-
sisting of spatially distributed autonomous devices that
use sensors and actuators to perform tasks. WSN are
used in many areas including, for example, environment
monitoring and home automation. With the increasing
development of these kind of systems, in order to
optimize its performance, the need for a systematic
approach to its analysis and design is arising. Petri
nets are proven to be well suited to model systems
with distributed, concurrent and asynchronous features.
In particular, generalized stochastic Petri nets (GSPN)
[10] allow us to obtain performance measures such
as probability of success of the modelled task and
robustness of the system to component failures.

The GSPN framework have been used successfully
to model robotic tasks, as seen in [5] and [2]. Petri
nets have also been used in the scope of WSN, for
example, in [9], where a model for the energy con-
sumption of processors for WSN is presented and in
[4], where an extension of Petri nets is used to build a
graphical simulation system that enables the analysis
of data propagation in a WSN where nodes receive
data and immediately broadcast it to all the nodes

B. Lacerda and P. Lima are with the Institute for Sys-
tems and Robotics, Instituto Superior Técnico, Lisboa, Portugal
{blacerda, pal}@isr.ist.utl.pt. The work of B.
Lacerda was supported by the portuguese Fundagédo para a Ciéncia
e Tecnologia through grant SFRH/BD/45046/2008.

within communication distance. Other analysis tools
for WSN have been proposed. For example, in [7],
Real-time Maude, a language supporting the formal
specification and analysis of real-time and hybrid sys-
tems, is used to model and analyse WSN algorithms,
particularly the optimal geographical density control
algorithm (OGDC) [11], an algorithm that tries to
maintain complete sensing coverage and connectivity
of an area for as long as possible by switching nodes
on and off, and in [1] a Markov chain based model
is introduced to study WSN performance in terms of
capacity, data delivery delay and energy consumptions
as its sensor dynamics in sleep/active mode change.
The impact of data aggregation in WSN, specifically
how to balance communication costs and data delivery
delay has also been studied, for example in [3].

We propose the use of GSPN as a tool to analyse sev-
eral relevant properties for a WSN with a multihop ar-
chitecture, where the sensor nodes are conveying gath-
ered information to the sink node. The idea is, given a
graph representing the network’s topology and GSPN
models of the nodes and the communication channels,
to automatically build a GSPN that encompasses the
GSPN node models plus the communication between
them and proceed with the analysis of this GSPN,
checking the impact of changing some of its parameters
in the overall network performance. In particular, we
will analyse the impact of data aggregation on network
latency and usage of the communication channels. This
analysis allows us, for example, to increase battery
life by decreasing the number of messages sent while
keeping the network latency below a certain threshold.
To calculate this impact, we perform simulations using
the TimeNET tool [12], a graphical tool that allows
modelling, analysis and simulation of GSPN.

In Section II, we give a brief introduction to GSPN,
followed by an explanation of how to use it to model
WSN in Section III. In Section IV, we present an
example of application and some results and, in Section
V, we provide some conclusions and possible improve-
ments to the method.



II. GENERALIZED STOCHASTIC PETRI NETS

In order to provide a clearer explanation of
the formalism’s basic rules, we start by defining
place/transition nets (P/T nets) [6], the ordinary kind
of Petri nets, which GSPN extend.

Definition 1 (P/T Net): A P/T net is a tuple N =
(P, T,W,Mp) where:

o P is a finite, not empty, set of places;

o T is a finite set of transitions;

e W:(PxT)U(T xP)— N is the arc weight

function;

e Mp: P— N is the initial marking.

A marking M can be seen as a vector of size |P|
that represents a state of the system, with M(p) =g
meaning that in M there are ¢ tokens in place p.

Definition 2 (Preset and Postset of a Transition):
Let N = (P,T,W,My) be a P/T net structure and r € T
The size |P| vectors #* and °¢ are defined as:

1*(p) =W(t,p)
*t(p) =W(p,t)

We refer to t* as the postset of ¢ and °¢ as the preset
of ¢.

The dynamics of a P/T net are defined by the firing
rule, which determines the flow of tokens between
places.

Definition 3 (Firing Rule): Let N = (P, T,W,M,),
t €T and M : P — N. Transition ¢ is said to be enabled
in M if for all p € P, *t(p) < M(p). A transition
¢t enabled in a marking M can fire, resulting in the
marking M’ = M — *t +¢*. This is denoted M - M’.

Using the firing rule, one can define firing sequences
and the set of reachable markings of a given P/T net.

Definition 4 (Firing Sequence): A firing sequence
of N = (P, T,W,Mp) from a given marking M is a
sequence of transitions T =t1,...t, € T* such that there
exists markings My, ...,M, such that:

MOSm Em3 By,

We also write M M, to denote that the firing se-

quence 7T drives N from marking M to marking M,,.
Definition 5 (Reachable Markings): The set of all

reachable markings by N = (P,T,W, M) is denoted as:

R(N)={M:P—N |exists T T* such that My — M}

GSPN are an extension of P/T nets, where there are
two different classes of transitions: immediate transi-
tions and timed transitions. Once enabled, an immediate
transition fires in 0 time while timed transitions fire

after an exponentially distributed time. Thus, a timed
transition will only fire when none of the immediate
transitions is enabled.

Definition 6 (Generalized Stochastic Petri Net): A
GSPN is an 6-tuple (P, T,W,My,D,S), where:

e P={pi,p2,...,pn} is a finite, not empty, set of
places;

o T =T UTg = {l‘]],llz, ...,l‘]m} U {ZEI,ZEZ, ...,lEn}
where T; is a finite set of immediate transitions
and Tg is a finite set of exponential transitions,
such that ;N Tg = 0;

e W:(PxT)U(T xP)— N is the arc weight
function;

e My : P — N is the is initial marking;

e D:Tr — R associates each exponential transition
tg; with a delay p = D(Tg;)';

e S:T; — R' is a function that associates each
immediate transition with a firing weight, thus
forming the so called set of random switches?;

When there are immediate transitions enabled, one

of them fires immediately, with a probability given by
the corresponding random switch. When there are only
exponential transitions enabled, there is a ‘“race” to
decide which transition fires first. For example, assume
that k exponential transitions ¢y, ...,# are enabled. From
the properties of the exponential distribution, we know
that the expected time transition ¢, i = 1,...,k takes to
fire is D(t;). Hence, the probability t?at transition #; is

the one to fire next is given by %
J=1D())

The GSPN marking is a semi-Markov process with a
discrete state space given by the reachability graph of
the net for an initial marking [10]. A Markov chain
can be obtained from the marking process, and the
transition probability matrix computed by using the
firing rates of the exponential timed transitions and
the probabilities associated with the random switches.
Given that the marking of the GSPN is equivalent to
a Markov chain, it is possible to use the tools already
available to analyse Markov chains directly with the
GSPN. Unfortunately, this methods require bounded
GSPN, i.e., nets where, for all reachable markings, the
maximum amount of tokens in each place is bounded

IThe delay of an exponential distribution is given by u =
where A > 0 is the rafe parameter of the distribution.
2Random switches associate probability distributions to subsets
of conflicting immediate transitions. So, for example, if immediate
transitions #; and ¢; are the only immediate transitions enabled, the
S(t;
S(li)grs)(fj) )

o

probability of firing transition #; is given by
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Fig. 1. Example of a network topology

by an integer, which is not the case of our models.
Hence, our results are obtained by performing Monte
Carlo simulations on the steady-sate of the GSPN
model for the WSN, a possibility provided by the
TimeNET tool.

III. MODELLING THE WSN

In this Section we discuss how to build the complete
WSN models from the models of its nodes and the
channel communication, according to a given topology
of the network. We assume that the network is moni-
toring a given environmental conditional (e.g., temper-
ature). Each node forwards the retrieved information to
the nodes it is connected with. The topology is given as
a directed graph, where each arc represents a channel
connection between the source node and the target
node. An example of a topology is given in Figure 1.

Each node is modelled by a Petri net, that describes
the ability of the node to read data from the envi-
ronment and the processing executed within it. In this
work, we only model the processing related with data
aggregation. We assume total data aggregation, where
all data packets are assumed to have the same size and
the aggregation of two packets in a node yields a single
packet, i.e., the result of the aggregation of two different
sets of data has the same size as one of the original sets
of data to be aggregated. In Figure 2, a simple model
for a node that performs data aggregation is depicted.

We provide a brief explanation of the meaning of the
model components. The place input_place represents
incoming data received from other nodes. This data is
immediately placed in place agg_queue, where it waits
for more data to be aggregated with. The aggregation is
represented by the transition aggregate_data that simply
retrieves two tokens from the agg queue place and
then places one token there. We model the aggregation
function as an immediate transition because the time it
takes to execute it is negligible. After a given amount of
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Fig. 2. A simple GSPN model for a node with data aggregation
capabilities
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Fig. 3. Model for a leaf node, with no aggregation capabilities

time, defined by the delay of the exponential transition
send_data, the data goes to place output_place, to be
sent to the target nodes in the topology.

The models for the leaf nodes - nodes that only send
messages - and the sink node are much simpler. For the
leaf nodes, depicted in Figure 3, we only model the
reading of data from the environment and the sending
of that data, due to the fact that we are only modelling
the flow of data from the WSN to the sink node, the
model of the sink node is simply one place that models
the receiving of the incoming data.

One should notice that the models contain a place
called events. We assume that the WSN is monitoring
some kind of data, and all the nodes read from the
environment at the same time, with a given rate. Hence,
when constructing the complete WSN model, we add
a transition with a given delay that puts one token in
each of the events place of each node model, so that all
the nodes read data from the environment at the same
time. This data immediately goes to place agg_queue, to
be aggregated with other data - if more data is already
waiting or arrives while the node is waiting to aggregate
- and is eventually sent towards the sink node.

The sending of messages is also modelled by a
GSPN representing the channels, as seen in Figure 4.
The place input_place represents messages to be sent.
If the channel is not busy, the message starts being sent
immediately, taking a time defined by the delay of the
exponential transition send_complete. While a message
is being sent, the channel is busy and other messages
to be sent wait in place input_place. This model does
not take into account possible failures in the sending
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Fig. 4. Petri net model for the communication channels

of messages, but one could add another exponential
transition, representing communication timeouts, with
channel_busy as input place and with a larger delay than
the send_complete transition. The delay of this timeout
transition would be related with the reliability of the
channel.

The WSN model is the composition of the node
models and the channel models. This composition is
obtained by, for each channel between 2 nodes, merging
the output_place of the sender node with the input_place
of the channel and the output_place of the channel with
the input_place of the receiver node. In Figure 5, we
show an example of a sender node that sends messages
to 2 receiver nodes.

Using this method to construct the model, one can
calculate the expected value of the number of tokens in
places channel_idle for each channel and the expected
value of the number of tokens in the agg_queue place
for each aggregating sensor node. This measures in-
dicate, respectively, the average usage of the channels
and the probability of a set of data being waiting for
more data to arrive, in order for the aggregation to be
performed.

IV. APPLICATION EXAMPLE

We present a simple example of application of this
method to a simple WSN. The WSN is composed of
16 sensor nodes, divided in four levels, and one sink
node. Each node of each level broadcasts the data to all
the nodes in the next level, e.g., node 1 in level 1 sends
the data it reads from the environment to nodes 5, 6,
7 and 8 in level 2. The nodes of the last level send
the data to the sink node. We assume that the nodes
retrieve information from the environment following
an exponential distribution of delay = 1. The sending
of the messages also follows an exponential transition,
with delay = 0.05, i.e., for each channel model, the
parameter associated with the exponential transition
send_complete is D(send_complete) = 0.05. One could
add different delays for different channels, taking into
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account the distance between nodes for example, but,
to simplify the description of the example, we defined
the same value for the delay of all send_complete
transitions.

Our goal is to adjust the delay of the send_data
transitions, so that we minimize the variables agg
and usg, respectively the probability of having one
token in the agg_queue places - data sets waiting for
more data to be merged with - and the probability of
having one token in the channel_busy places - usage
of the communication channels. These two variables
are conflicting, because if the data spends less time
waiting to be aggregated, then more messages must be
sent, thus increasing the usage of the communication
channels, and vice-versa. Hence, one needs to define
a function f of agg annd usg to be minimized. To
simplify the example, we merely define f as a convex
combination of both variables:

f(agg,usg) = aagg+ (1 — a)usg

The « parameter can be adjusted to give more
importance to decreasing the communication channel
usage, or to avoid a big impact of the aggregation on
the network latency. To simplify, we choose o = 0.5.
The function to be minimized can always be defined
by the designer, taking into account the performance
goals for the WSN.

We will perform the analysis by level, in an increas-
ing order. This is done because the nodes in each level
do not send data to nodes in lower levels, hence the
value obtained for the delay of the send_data transitions
on lower level nodes is not affected by changing the
delay of the send_data transitions of the higher level
nodes.

The first level of nodes does not receive data from
other nodes, hence they are modelled as leaf nodes, as
explained in the previous Section. Thus, for these nodes
there is no need to perform any kind of evaluation.

For the second level of nodes, we arbitrarily fix the
delay of the send_data transitions on higher levels and
perform simulations varying the delay of the send_data
transitions in this level from 0.01 to 0.1, with a step
of 0.01. The results of the simulations are depicted in
Figure 6.

One can see that, as expected, the value of agg
increases with the increase of the time the node waits
to aggregate data before sending, while the value of usg
decreases. The minimum of the function f(agg,usg) is
attained when the delay is 0.03, hence, we fix the delay
at level 2 to this value.

20,00%

18,00% \\

16,00%

14,00%

12,00%

10,00%

P(M(p)=1)

8,00%

6,00% /

4,00% e

2,00%

0,00%

Dsend_data)

Fig. 6. Results for level 2
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Fig. 7. Results for level 3

For the third level of nodes, similar simulations as
the ones for level 2 were performed, fixing the delay
of the second level nodes as 0.03 and arbitrarily fixing
the delay of the nodes in the fourth level. The results
can be seen in Figure 7.

The nodes in this level have larger values for both
agg and usg, as a result of this level being closer
to the sink. This is a usual property of WSN, since
nodes near the sink typically have to forward larger
amounts of data. The value of the delay that minimizes
f(agg,usg) is 0.06. The larger delay when compared
with the nodes in level 2 is justified intuitively by the
increase of messages received and sent by the nodes in
this level.

Fixing the delay for nodes in level 2 as 0.03 and the
delay for the nodes in level 3 as 0.06, simulations were
run for the nodes in level 4. The result are depicted in
Figure 8.

As expected, since this is the level closer to the sink,
its nodes are the ones with higher values of both agg
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Fig. 8. Results for level 4

and usg. For this level, f(agg,usg) is minimized when
the delay is equal to 0.09.

V. CONCLUSIONS AND FURTHER WORK

We presented a modelling framework for the data
flow in WSN that allows the study of several network
properties. The network sensor nodes and data channels
are modelled as GSPN, a formalism that provides
several analysis and simulation methods for an array of
quantitative measures that have a physical interpretation
in the WSN scope. We provided an application example
where the channel usage and data waiting to be aggre-
gated in each node was calculated and a function of
these two metrics was minimized in order to optimize
the network efficiency.

There is a number of improvements to the work
presented. Firstly, improving the models in order to
achieve a more accurate representation of the real
network and to allow the possibility of calculating
other relevant metrics such as the average time between
the arrival of new data and its delivery to the sink
node. One can also easily add transition failures to
the channel models in order to analyse the network’s
robustness to communication failures. Another idea is
to use this method to compare different topologies for
the same network, regarding a set of relevant metrics
calculated from the GSPN models, such as the ones
presented in this work. Finally, one should validate the
GSPN models using a suitable real WSN, for example
the vibration monitoring application described in [8].
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