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Abstract— We describe the implementation of a method to
control a social robot based on discrete event system supervisory
control theory. The sensors and actuators of the robot are
modelled as Petri nets, and the target behaviour is given as a set
of rules written as linear temporal logic (LTL) formulas. The
Petri net models and LTL rules are then used to build a Petri net
realization of a supervisor that is guaranteed by construction to
restrict the robot’s behaviour such that the rules are fulfilled.
This approach provides a close-to-natural-language description
of the target behaviour, and can be the basis for a human-robot
speech interaction device, where the rules for the robot to fulfil
are described by the human in natural language.

I. INTRODUCTION

Social robotics is an emerging field where a special
attention is paid to the interaction between the robot and the
human user(s). To be appropriate for this kind of interaction,
a robot must fulfil several requirements, such as providing
different forms of interacting (e.g., speech, touch), possessing
a high level of autonomy, and being able to learn and to adapt
to different situations.

In this work, we present the application of a method that
implements linear temporal logic (LTL) [7] specifications in
Maggie [14], a social robot developed at the RoboticsLab
of Universidad Carlos III de Madrid with the main purpose
of interacting with children. We will model a subset of
Maggie’s sensors and actuators as Petri nets (PN) [13], and
define rules that restrict Maggie’s behaviour in LTL. The
PN and the LTL formulas are then used to build a PN
realization of a supervisor [4] that forces the system to fulfil
the formulas. The use of LTL provides a close-to-natural-
language framework to define the rules for the robot, which
can allow the development of a speech interaction module,
where the user states the rules using a pre-defined subset
of natural language, and the robot then shows the behaviour
originated by those rules. This kind of interaction can be
used as a game for children, where they can see the impact
of the rules they state in the behaviour of the robot.

The work presented here can be seen as a first step to
develop an alternative approach to the work presented in
[9], where a method to teach action sequences by means of
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speech interaction is defined. This method relies on speech
interaction with the user, who utters orders in a pre-defined
subset of natural language. The orders are translated to a
sequential function chart (SFC) [5], a graphical programming
language based on binary PNs, used for programmable
logic controllers. SFCs feature elements such as conditional
choices, parallel execution of sequences and loops. In this
approach, the user starts from an “empty plan”, and builds
a behaviour for the robot by fully stating all the actions,
and in which order and in which conditions they are to be
performed. Conversely, in our work, the user starts with all
the possible actions for the robot being able to be executed
randomly and restricts them to the desired behaviour by
stating rules that the robot must fulfil. Hence, [9] can be
seen as a direct approach to building sequences for the robot
to execute where the whole behaviour must be specified
step-by-step, while we propose a more abstract approach,
where the desired behaviour is obtained from a set of general
rules. This might lead to the appearance of “surprises” in
the behaviour of the robot, in the sense that it may exhibit
properties that were not thought of by the user when stating
the rules.

Another technique used for humans teaching behaviours
to robot systems, which has presented good results, is pro-
gramming by demonstration, where the user shows the robot
how to perform a given task, being imitated by the robot
afterwards. Two examples of this approach are [1] and [3].
Due to its suitability to model concurrent systems and the
wide range on analysis methods available, PNs are a widely
used tool for the modelling of robot systems [15], [6]. Also,
LTL has been successfully applied as a language to specify
and synthesize correct by design admissible behaviours [12],
[10]. Furthermore, a translation between a restricted subset
of English and LTL to deal with motion planning problems
for mobile robots is defined in [11].

The paper is outlined as follows: in Section II we provide
a brief description of Maggie, the platform where we imple-
mented the method. In Section III we show how to model
Maggie’s sensors and actuators as Petri nets where some
places correspond to the truth value of binary variables used
to describe the state of the system, followed by an expla-
nation on how to write the LTL specifications, in Section
IV. Section V describes the method for the construction of
the supervisor and, in Section VI, a discussion about the
approach and future developments is provided.
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Fig. 1. Maggie, the social robot, interacting with a child.

II. MAGGIE, THE SOCIAL ROBOT

Maggie, depicted in Figure 1, is a social robot developed
at the RoboticsLab of Universidad Carlos III de Madrid to
interact mainly with children. In this Section, we provide
a brief description of its capabilities, further details can be
found in [14].

Maggie is a 1.35m tall girl-like doll. Her base is equipped
with two differentially driven wheels and a caster wheel on
each side. The arms and the eyelids have 1 DOF: up/down,
while the neck has 2 DOF: up/down and left/right. She also
possesses tactile sensors, including on the shoulders and
on top of her head. These are the sensors and actuators
that we took into account in our implementation. Maggie
possesses many other capabilities, such as infrared and
ultrasound sensors used for navigation, a color camera for
people tracking and a mouth shape with invisible web-cam
and coloured lights synchronized with the speech. These
capabilities result in a platform well suited to study human-
robot interaction and robot learning by training and teaching.

The control architecture is based on the automatic-
deliberative (AD) control architecture proposed in [2]. In this
architecture, the robot skills are divided in two levels. In the
automatic level, we find the skills related with robot sensors
and actuators. In the deliberative level, we find higher-
level skills, such as a planner or our implementation of the
feedback-loop of supervisory control. The skill we developed
subscribes to events representing changes in sensor readings,
for which an event handler is implemented. Also, it can order
the execution of skills related to performing simple actions
(e.g., raising an arm or start spinning).

III. PETRI NET MODELLING AND EXECUTION

We will use PNs to model Maggie behaving freely in
the environment. This model is a building block of the
supervisor, being used in conjunction with the LTL formula

specifying the target behaviour to build it. In the PN models
used here both places and transitions have a specific inter-
pretation:
• Places represent the value of binary variables that are

used to define the state of the system. For each variable,
there is one place representing that is is true and one
place representing that is is false. For all reachable
markings of the Petri net, there is one token in one
of these places and zero in the other. This means that,
for a given marking, one can unambiguously extract the
corresponding state. A state is the set of variables for
which the places meaning that they are true have one
token;

• Transitions represent orders to execute actions or
changes in sensor readings, i.e., the firing of a transition
represents a communication between our implementa-
tion and the automatic level of the architecture.

In Figure 2, the PN model for Maggie is depicted. The
model is composed of several modules, one for each actuator
and one of each sensor. We represent the interpretation of
each place and transition as 〈.〉. For example, a token in place
p1 means that moving f orward is true and a token in place
p2 means that moving f orward is false. Furthermore, the
firing of transition t1 represents executing the move f orward
action and the firing of transition t19 means that someone
started touching the tactile sensor on the left shoulder.

To illustrate, the initial state for Maggie, given by the
depicted marking, is the set:

{base idle, head center, head down, le f t arm down,
right arm down, le f t eyelid down, right eyelid down}

We note that, for the base, when a start action is issued,
the robot starts performing that action until a stop action
is issued, that is, the action continues until it is explicitly
stopped. For the other models, we assume that the actuator
moves for a fixed amount and then stops, hence no stop
action is required.

We implemented a Petri net executor in C++, so that
the robot is able to run its system Petri net. We start
by dividing the transitions into transitions corresponding to
actions - t1 to t18 - and transitions corresponding to changes
in sensor readings - t19 to t24. The implementation is a
loop that, in each step, randomly selects one of the active
transitions corresponding to actions and fires it, ordering
the execution of the corresponding action and updating the
marking. Also, when one of the sensors changes state, the
handler interrupts the loop, and the transition corresponding
to that sensor change is immediately fired and the marking is
updated. By running this PN without supervising it, Maggie
simply executes random actions, displaying an unrestricted
behaviour.

IV. WRITING THE LTL SPECIFICATION

We will write LTL formulas that restrict Maggie’s be-
haviour. These formulas are written over the set Π, defined by
the union of the set E of events (actions plus sensor readings)
and the set D of variables that describe the states. Formulas



Fig. 2. The Petri net model for Maggie’s different actuators and sensors.

LTL are written using the usual propositional connectives
plus a set of temporal connectives, including the next (X),
always (G) and until (U) connectives. LTL formulas are
evaluated over infinite sequences of sets of propositional
symbols σ : N→ 2Π. Intuitively, for i ∈ N:

• A state σ(i) satisfies Xϕ when state σ(i+ 1) satisfies
ϕ;

• A state σ(i) satisfies Gϕ if all states σ( j) with j ≥ i
satisfy ϕ;

• A state σ(i) satisfies ϕUψ if ϕ is satisfied in all states,
until a state appears where ψ is satisfied.

With these operators, we can specify a wide array of
different rules for Maggie to fulfil. We will illustrate this by
providing the LTL specifications for three different target be-
haviours. The first behaviour is a simple sequence triggered
by touching the head of the robot. The sequence can be stated
in natural language as “When the head is touched raise the
left arm, then raise and lower the right arm. When the head
stops being touched, lower the left arm”. This sequence can
be translated into the following simple rules:

• The left arm must only be raised when the head is being
touched:

G(touching head⇔ (X(¬le f t arm down))) (1)

• The right arm must only be raised after the left arm is
raised:

G(raise le f t arm⇔ (Xraise right arm)) (2)

• After raising the right arm, it must be immediately
lowered again:

G(raise right arm⇒ (Xlower right arm)) (3)

The second behaviour shows how to specify different
reactions to different sensor readings. We can state it has “If
the left shoulder is touched, wait until the right shoulder is
touched and then raise your right arm. If the right shoulder is
touched, wait until the left shoulder is touched and raise your
left arm. After raising an arm, lower it again and return to
the initial state”. To keep track of which shoulder is touched,
we use the state of the eyelids. If both eyelids are down, then
no shoulder has been touched yet. If one of the eyelids is
up, then the corresponding shoulder was touched and Maggie
is waiting for the other shoulder to be touched. Hence, the
behaviour can be implemented by the following rules:

• If the left shoulder is touched and both eyelids are down
(i.e., no shoulder was touched yet), raise the left eyelid:

G((sense le f t shoulder∧ right eyelid down∧
le f t eyelid down)⇔ (Xraise le f t eyelid)) (4)

• If the right shoulder is touched and the left eyelid is up
(i.e., the left shoulder was previously touched), raise the
right arm:

G((sense right shoulder∧¬le f t eyelid down)⇔
(Xraise right arm))

(5)
• After raising the right arm, return to the initial state by

lowering the left eyelid and the right arm:

G(raise right arm⇔ (Xlower le f t eyelid)) (6)

G(lower le f t eyelid⇔ (Xlower right arm)) (7)

• If the right shoulder is touched and both eyelids are
down (i.e., no shoulder was touched yet), raise the right



eyelid:

G((sense right shoulder∧ right eyelid down∧
le f t eyelid down)⇔ (Xraise right eyelid)) (8)

• If the left shoulder is touched and the right eyelid is up
(i.e., the right shoulder was previously touched), raise
the left arm:

G((sense le f t shoulder∧¬right eyelid down)⇔
(Xraise le f t arm))

(9)
• After raising the left arm, return to the initial state by

lowering the right eyelid and the left arm:

G(raise le f t arm⇔ (Xlower right eyelid)) (10)

G(lower right eyelid⇔ (Xlower le f t arm)) (11)

Note that in this behaviour, touching the same shoulder more
than one time in a row does influence the arm to be raised.
After touching one of the shoulders, Maggie ignores all other
sensor readings until the other shoulder is touched. When that
happens, she raises the corresponding arm.

The third behaviour is also triggered by touching the head,
but we allow the robot to perform random actions during the
behaviour. It can be stated as “Move arms randomly. When
the head is touched, start spinning until both arms are up”.
This can be translated into the following rules:

• Only start spinning when the head is touched, you are
not spinning yet and both arms are not already up:

G((sense head∧ (¬spinning)∧
¬(¬le f t arm down∧¬right arm down))⇔
(Xstart spinning))

(12)

• After starting to spin, continue spinning until both arms
are up:

G(start spinning⇒ (X(
spinningU(¬le f t arm down∧¬right arm down))))

(13)
• When both arms are up, stop spinning (or continue

stopped if you are not spinning):

G(¬le f t arm down∧¬right arm down)⇒
(X¬spinning)) (14)

All of these examples also include an additional formula
which avoids the execution of the actions that are not referred
to in the specification, i.e., in each example, a formula of the
form G

(∧
e∈Eo ¬e

)
, where Eo is the set of actions that is not

mentioned in that example is also added.

V. CONSTRUCTING THE SUPERVISOR

To build the supervisor, we need to define a way to
compose the LTL formulas with the PN model. This is
done by translating the formula ϕ to a (non-deterministic)
Büchi automaton (BA) Bϕ that accepts exactly the infinite
sequences that satisfy ϕ . There are several methods for the
construction of such automaton. In the implementation of the
method we present here, we use one of the most efficient

Fig. 3. The Büchi automaton for LTL formula (14)

translation algorithms, LTL2BA, described in [8]. In Figure
3, we show the BA obtained for formula (14).

The alphabet set of this automaton is 2E∪D, but proposi-
tional logic formulas in the disjunctive normal form (DNF)
are used to describe the transition labels in a more compact
way. A formula in the DNF is the disjunction (∨) of a set of
conjunctive clauses. A conjunctive clause is a conjunction
(∧) of literals. A literal is a propositional symbol or its
negation. For example, the transition label from sate y to
state x means that any element of 2E∪D that does not contain
spinning and contains right arm down or that does not
contain spinning and contains le f t arm down is a label for
the transition. We also note that the automata outputted by
LTL2BA are trimmed, i.e., all their states can be reached and
there is a path between each state and at least one accepting
state.

The PN that restricts Maggie’s behaviour to the one
specified by an LTL formula is a PN that simulates a run
in parallel of the PN model of Maggie and the observer1 of
the BA obtained for that formula, where a transition t can
only fire in parallel with a transition of the observer of the
BA when we are ensured that the marking to which the PN
evolves satisfies the formula labelling the BA transition. This
is done by looking at each transition of the PN and checking
in which conditions it can fire while satisfying the transition
labels of the BA. To illustrate, we will show how to compose
the transitions from state x in Figure 3 with transition t3 of
Figure 2. We start by stating the facts that are guaranteed to
happen after t3 fires:
• Action start spinning has just occurred;
• All other actions and sensor readings in E did not just

occur;
• State description variable spinning is true - this fact is

guaranteed because place p5, the place corresponding
to spinning being true, is an output place of t3, hence
after t3 fires it will always have a token - and base idle
is f alse - by the same reasoning as with spinning.

Hence, we can define a partial valuation that represents all
the information about events and state description variables
that is guaranteed to happen after the firing of t3:

vt3(π) =


1 if π ∈ {start spinning,spinning}
0 if π ∈ (E \{start spinning})∪

{base idle}
↓ if π ∈ D\{spinning,base idle}

1The observer of a non-deterministic automaton G is its deterministic
version, built using the known power-set construction [4].



The valuation is undefined for all state description vari-
ables that are not directly related to the firing of t3, in the
sense that none of the places representing its value receives
a token with the firing of t3. This valuation can be applied
to the transition labels of the BA, which we will denote as
J.Kvt3

. The result of such evaluation is:
• true or f alse if vt3 provides enough information to

evaluate the truth value of the label;
• The formula composed of the elements of the label for

which vt3 should be defined for one to unambiguously
be able to evaluate its truth value.

In the case of the transitions of the BA in Figure 3:

Jright arm down∨ le f t arm downKvt3
=

right arm down∨ le f t arm down
(15)

JtrueKvt3
= true (16)

u

v
(¬spinning∧ right arm down)

∨
(¬spinning∧ le f t arm down)

}

~

vt3

=

u

v
( f alse∧ right arm down)

∨
( f alse∧ le f t arm down)

}

~

vt3

= f alse

(17)

J¬spinningKvt3
= f alse (18)

Due to the non-determinism of the BA, we will have to
analyse 3 different cases for state x:
• Can we keep the BA is state x after firing t3? To

guarantee that we stay in state x, we need to check
in which conditions can t3 fire while satisfying formula
(15) and not satisfying formula (16), i.e., satisfying the
label of the transition that goes to x and not satisfying
the label of the transition that goes to y:

(right arm down∨ le f t arm down)∧¬true = f alse

This means that this situation can never happen. Thus,
we do not add transitions to the supervisor;

• Can we take the BA from state x to state y after firing t3?
In this case we need to check in which conditions can
t3 fire while not satisfying formula (15) and satisfying
(16), i.e.:

¬(right arm down∨ le f t arm down)∧ true =

¬right arm down∧¬le f t arm down

Hence, we add one transition to the supervisor (because
there is only one conjunctive clause), with arcs equal to
t3 plus place {x} as an input place and place {y} as an
output place (thus evolving the “observer” of the BA
from the state {x} to state {y}) and a reflexive arc2 to
the the places representing the literals in the obtained
conjunctive clause, i.e., one reflexive arc to the place
representing ¬right arm down (p18) and one reflexive
arc to the place representing ¬le f t arm down (p16);

2A reflexive arc between a transition t and place p is a pair of arcs, one
from p to t and another from t to p. Hence, t only fires when there is a
token in p but it does not change the amount of tokens in p.

• Can we take the BA from state x to both states x and y
after firing t3? In this case we need to check in which
conditions can t3 fire while satisfying both formulas (15)
and (16) , i.e., satisfying:

(right arm down∨ le f t arm down)∧ true =

right arm down∨ le f t arm down

Hence, we add two transitions to the supervisor
(one for each conjunctive clause, i.e., one corre-
sponding to right arm down and one corresponding to
le f t arm down) with arcs equal to t3 plus place {x} as
an input place and place {x,y} as an output place and,
for each of the added transitions, a reflexive-arc to the
place representing the corresponding literal.

Figure 4 depicts the fragment of the supervisor obtained
from the analysis above, showing the three transitions cre-
ated. The algorithm starts by analysing the transitions from
the initial state of the Büchi automaton and adds newly
reached states of the observer to a queue to be analysed
next. Note that the fact that both formulas (17) and (18)
are false means that when we analyse t3 in the observer BA
state {y}, no transition will be created. This is aligned with
what one would expect, since we are building a PN that
satisfies the natural language rule “When both arms are up,
stop spinning (or continue stopped if you are not spinning)”,
hence the action start spinning must be disabled whenever
both arms are up, which, simplifying, is the meaning of BA
state y.

The PNs obtained using this composition are then used
in the feedback loop of modular supervisory control [4].
Informally, they run in parallel with the PN model of Maggie,
executing the same events, and outputting the set of enabled
events, given by the intersection of the labels of the active
transitions for each PN supervisor. At each step, all events
that are not in the set of enabled events cannot be executed
by Maggie. This feedback loop was implemented on top of
the Petri net executor.

In the video available at http://bit.ly/dQqVQK, we
show both the uncontrolled behaviour of Maggie and its
behaviour when being supervised by the Petri nets obtained
from the specifications described here.

VI. CONCLUSION AND FURTHER WORK

We described the implementation on Maggie, the social
robot, of a method to perform PN-based supervision of
robotic tasks, where the admissible behaviours are given in
LTL. The similarities between natural language and temporal
logic, and the fact that we can write formulas over both
the events (actions plus sensor readings) of the system and
a set of variables used to describe the state of the robot,
allows the writing of rules for a wide array of different goal
behaviours. This approach can be the basis for a method
based on speech interaction, that allows the user to state
rules for the robot to fulfil in natural language. Specifically
for Maggie, this can be made into a game where children
can see the impact of their rules in the robot’s behaviour.



Fig. 4. A fragment of the obtained supervisor

Future work includes creating such a method, where the
allowed natural language utterances are translated into LTL
and the method presented here is then applied. This can
probably be achieved by adapting the structured English
defined in [11] to Maggie’s domain. Maggie already has a
speech recognition skill, hence this appears to be the main
issue in the development of the method. Afterwards, we
intend to compare this approach with the work presented
in [9], where sequences of actions are taught to Maggie
by means of speech interaction, where the user exhaustively
describes every possible action to be executed. We feel that,
by providing a more abstract approach where a set of rules
results in a certain behaviour, this approach might be more
appealing to older children that already have the capabilities
of inferring what might be the consequences of stating a
given rule for the robot to fulfil.
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