
LTL Plan Specification for Robotic Tasks Modelled as
Finite State Automata

Bruno Lacerda∗and Pedro U. Lima
Institute for Systems and Robotics

Instituto Superior Técnico
Lisbon, Portugal

{blacerda, pal}@isr.ist.utl.pt

Abstract

We introduce a plan specification method for robotic tasks modelled by finite state
automata. Each state of a system composed of (multiple) robot(s) situated in an
environment is described by a set of propositional symbols. Events associated to tran-
sitions drive the state dynamics and represent actions issued by the robot controller
or uncontrollable events (e.g., a failure or an action performed by another robot). The
plan specifications are written in linear-time temporal logic, enabling a close-to-natural-
language description of specifications while creating a sound method of enforcing them,
by designing a supervisor, based on discrete event systems theory, that restricts the
uncontrolled behaviour of the robot(s) to the subset of acceptable/desirable behaviours.

1 Introduction
A discrete event system (DES) [1] is a discrete state space dynamic system that evolves
in accordance with the instantaneous occurrence, at possibly unknown times, of physical
events. DES are a suitable framework for the modelling of robotic tasks and, at a logical
level of abstraction, supervisory control (SC) has been introduced as a way to restrict a
system’s open-loop behaviour in order to fulfil a set of performance objectives. SC of a
DES modelling robotic tasks can be seen as a formal planning method, where the super-
visor enforces specifications by restricting the original set of system (robot+environment)
trajectories to a subset of those which meet such specifications. Formal models help design-
ing practical systems because they provide a systematic approach to analysis and design.
In robotic systems, though one can design fairly complex behaviours these days, by using
graphical tools or high-level modular (e.g., behaviour-based) languages, little or no formal

∗The work of this author was supported by the portuguese Fundação para a Ciência e Tecnologia through
grant SFRH/BD/45046/2008.

1



verification is usually possible when using such development systems. DES provide not only
a fairly natural way of modelling robot tasks, but also qualitative analysis tools, including
formal verification of deadlocks, livelocks, conservation, among others. Furthermore, quan-
titative analysis of the robot(s) behaviour, e.g., concerning plan reliability or sensitivity to
the reliability of some of its composing actions, is also possible. DES theory also provides
systematic tools and methods to design supervisors that guide the open loop system be-
haviour so as to avoid undesirable states and/or event sequences. All these features enable
designing and analysing large-size robot systems models which are not tractable using “man-
ual” methods, thus providing guarantees and meeting specifications. DES theory has been
used successfully for years to model and analyse manufacturing systems. Our goal is to
extend those results, which concern more structured systems, to more unstructured classes
of robotic systems, such as home robots and outdoor robots, including cooperating teams.
One problem with DES supervision is that it is usually hard to express in a natural way the
desired specifications. LTL is a step forward towards using natural languages to specify the
requirements for robotic systems. In [7], we presented a method to synthesize a supervisor
for a DES modelled by a finite state automaton (FSA) [4], based on linear-time temporal
logic (LTL) [2] specifications over the FSA’s event set. That method allowed the supervi-
sion of more complex systems, since the translation of our performance objectives to LTL
is, in general, more immediate than the standard method of directly building an FSA that
represents the specifications. However, the fact that the LTL formulas are only written over
the FSA’s event set forces us to write some of the LTL formulas in a somewhat artificial
way, namely the specifications that refer to a state of the system that must not be reached.
The main purpose of this paper is to extend that method in such a way that these kind of
specifications can be easily translated into an LTL formula. To achieve this we associate a
propositional description of the environment to each state of the FSA and write our LTL
specifications over those propositional descriptions, in addition to the FSA event set. This
will allow us, for example, to refer to a state by the propositional symbols that describe it.
Significant work has been done in applying temporal logic to different robotics fields, e.g.,
motion planning [6], state-based supervision [5] and planning for temporally extended goals
[9]. The difference to our work is that our goal is to coordinate the actions available to a
team of robots so that they effectively cooperate among each other. This implies a tighter
coordination of the robot’s actions, which we handle by writing specifications not only over
propositions describing the system but also directly over the actions available at each time.

2 Preliminaries
We start by giving a brief overview propositional logic and LTL [2]. Let Π be a set of
propositional symbols. Regarding propositional logic, we just note that we will evaluate
the propositional formulas over valuations v ⊆ Π. LTL is an extension of propositional
logic which allows reasoning over infinite sequences of states σ ∈ 2Πω. LTL formulas extend
propositional formulas by adding an X operator, which is read “next” and requires the
formula it precedes to be true in the next state and an U operator which is read “until”
and requires its first argument to be true until a state where the second is true. As usual,

2



we define the “eventually” and “always” operators, F and G, by abbreviation. We will be
interested in the finite sequences that are prefixes of at least an infinite sequence that satisfies
ϕ, which we call consistent sequences with ϕ. An FSA is a six-tuple G = 〈X,E, f,Γ, x0, Xm〉
where X is the set of states, E is the set of events, f is the transition function, Γ is the active
event function, x0 is the initial state and Xm is the set of marked states, as defined in [7]. We
assume that our FSA have a propositional description over a set of propositional symbols P .
This is simply a function V : X → 2P such that, for x ∈ X, V (x) is the set of propositional
symbols that are true in x. One should notice that for the parallel composition G1 ‖ G2,
the propositional description of a state (x1, x2) - which represents that G1 is in state x1 and
G2 is in state G2 - is the union of the propositional descriptions of both of these states.
Büchi automata have the same structure as FSA, but generate and mark ω-languages, i.e.,
languages of infinite strings. It is a known fact that, given an LTL formula ϕ, there exists a
Büchi automaton Bϕ such that σ 
 ϕ if and only if σ ∈ Lm(Bϕ). In our implementation, we
use the method described in [3]. We will assume that the transitions of this Büchi automaton
are labelled with propositional formulas. Further details can be found in [3].

3 Supervisor Synthesis
In our method, we start with a DES modelled as an FSA equipped with a propositional
description, consisting of all the possible behaviours of a set of robots in their environment.
We will model the system as an FSAG = 〈X,E, f,Γ, x0, Xm〉 with a propositional description
V over P and will specify the intended controlled behaviour as a set of n LTL formulas
Φ = {ϕ1, ..., ϕn} built over the set of propositional symbols Π = E ∪ P . This means
that we will be able to refer both the state propositional descriptions and the sequence of
event firings of the system. For each ϕi, we build the equivalent Büchi automaton Bϕi

and,
using the DNF description of the events, the supervisor SΦ is implemented by the FSA
given by (G ‖spec Bϕ1 ‖spec Bϕ2 ‖spec ... ‖spec Bϕn)↑A. SΦ

↑A is the automaton that generates
the supremal controllable language with respect to L(G) and L(SΦ), guaranteeing that our
supervisor is admissible, as described in [1]. Given an FSA G with a propositional description
V over P modelling the system and the Büchi automaton Bϕ = 〈XB, 2(E∪P), fB,ΓB, xB0 , X

B
m〉

obtainned by an LTL formula ϕ, the specification parallel composition of G and Bϕ is the

FSA G ‖spec Bϕ = 〈X×2X
B
, E, f ′,Γ′, (x0, {xB0 }), X ′

m〉, where, for x ∈ X, x ⊆ XB and e ∈ E:

f ′((x, x), e) =

{
(f(x, e), g(x, x, e)) if g(x, x, e) 6= ∅
undefined if g(x, x, e) = ∅

with g : X × 2X
B × E → 2X

B
defined as:

g(x, x, e) =
⋃
xB∈x

⋃
eB∈ΓB(xB)

{
fB(xB, eB) | V (f(x, e)) ∪ {e} 
 eB

}
G ‖spec Bϕ restricts G’s behaviour to the one specified by ϕ, i.e., for all e0e1...en ∈ L(G ‖spec
Bϕ), (V (f(x0, e0) ∪ {e0})(V (f(x0, e0e1)) ∪ {e1})...(V (f(x0, e0e1...en)) ∪ {en}) is consistent
with ϕ.

Example. Consider a soccer team of n robots. The objective is to reach a situation

3



without balli

moving to balli

preparing to get balli

with balli

preparing to kicki

moving to goali

choosing receiveri

passing balli

receiving balli

move to balli

close to balli

get balli

close to goali

move to goali

blocked pathi

kick balli

close to goali

blocked pathi

start passingi,j

passi,j

start receivingi

passj,i

1

Figure 1: FSA model for robot Ri

in which one of the robots is close enough to the goal to shoot and score. When a robot
does not have the ball in its possession, it can move to the ball until it is close enough to
take its possession or get ready to receive a pass from a teammate. When it has the pos-
session of the ball, it can shoot the ball, take the ball to the goal if there is no opponent
blocking its path or choose a teammate to pass the ball and, when it is ready to receive,
pass it. For simplicity, we assume that, when a robot shoots the ball, the team loses its
possession and that the opponents are only able to block paths. Figure 1 depicts a pos-
sible model for robot Ri situated in a soccer game, with a propositional description over
Pi = {moving2balli, hasballi}. We associate states without balli and receiving balli with ∅,
states moving to ball and preparing to get balli with {moving2balli} and states with ball,
preparing to kicki,moving to goali and passing balli with {hasballi}. An FSA model for
the whole team is given by T = R1 ‖ R2 ‖ ... ‖ Rn. The events close to balli, close to goali
and blocked pathi are caused by changes in the environment, hence uncontrollable. The
remainning events are controllable events and correspond to the actions available to each
robot. One may define the following specifications, which are useful to improve the team’s
performance, for each robot Ri. First a robot will move to the ball if and only if the ball is
not in the team’s possession and no other teammate is moving it:

ϕ = (G(
n∨
i=1

moving2balli ∨
n∨
i=1

hasballi)⇒ (X(¬(
n∨
i=1

move to balli))))

Second, robot Ri will not get ready to receive a pass, unless one of its teammates decides to
pass the ball and, in this case, it will be ready to receive the pass as soon as possible:

ψi = ((¬start receivingi) ∧ (G((
n∨
j=1
j 6=i

start passingj,i)⇔ (Xstart receivingi))))

Hence, the controlled system will be given by (T ‖spec Bϕ ‖spec Bψ1 ‖spec ... ‖spec Bψn)A↑.

4 Discussion and Conclusion
In this paper, we presented an extension of our method to perform LTL based SC of DES.
This extension improves the previous method by allowing us, in addition to the previous

4



possibility of reasoning over the sequence of events, to reason directly over the system’s
states, through a propositional description of each state, hence improving the method’s
expressiveness. We provided an example to show how our method can be used to coordinate
a team with an arbitrary number of robots in order for it to efficiently perform a given
task. Analysing this example, one can conclude that, in spite of providing a more natural
way to perform SC, the designer still has to have some sensibility about how to define a
useful state propositional description, and that the writing of the LTL formulas requires
a good understanding of the structure of the system. Some familiarity with LTL is also
required but, in our opinion, this is something that can be easily achieved. This method
presents a few limitations that arise from the modelling formalism: FSA are not the most
suitable formalism to model multi-robot tasks and, since we model the system from a logical
point of view, we cannot analyse quantitative properties of the system. There are also some
specifications that cannot be implemented by our method, in particular any specification
that involves “counting” cannot be enforced in this framework, e.g., we cannot enforce that
state x cannot be visited by the system more times than state y. Though most of the LTL
formulas relevant to perform SC over these kind of systems yield a relatively small Büchi
automaton, we noticed that a particular kind of specifications that can be useful in our case
leads us to a state explosion of the Büchi automaton: formulas of the form (G(p ⇒ Xnq)),
where Xn is the application of the “next” operator n times, yield a Büchi automata with
2n states. The next step to our work will be an improvement to the modelling framework,
from FSA to Petri nets, adopting a more suitable formalism for multi-robot task modelling.
We will be concerned in defining a supervision method for Petri nets based in temporal
logic specifications, possibly adapting methods for Petri nets model-checking with LTL and
existing supervisory control theory for Petri nets.

References

[1] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[2] E. A. Emerson. Temporal and modal logic. In Handbook of theoretical computer science (vol. B): formal
models and semantics, pages 995–1072. MIT Press, Cambridge, MA, USA, 1990.

[3] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV ’01: Proceedings of the
13th International Conference on Computer Aided Verification, pages 53–65, London, UK, 2001.

[4] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation (3rd Edition). Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA, 2006.

[5] S. Jiang and R. Kumar. Supervisory control of discrete event systems with CTL* temporal logic speci-
fications. SIAM Journal on Control and Optimization, 44(6):2079–2103, 2006.

[6] M. Kloetzer and C. Belta. A fully automated framework for control of linear systems from temporal
logic specifications. IEEE Transactions on Automatic Control, 53(1):287–297, 2008.

[7] B. Lacerda and P. U. Lima. Linear-time temporal logic control of discrete event models of cooperative
robots. Journal of Physical Agents, 2(1):53–61, 2008.

[8] M. Pistore and P. Traverso. Planning as model checking for extended goals in non-deterministic domains.
In Proc. of the 17th Int. Joint Conf. On Artificial Intelligence (IJCAI’01), Seattle, WA, USA, 2001.

5


